BLOGGER TEMPLATES AND TWITTER BACKGROUNDS

Wednesday, August 26, 2009

ate na c abby :))

AUGUST 26,2009. BABY ASHLEY BUELA was born :) Lil sister ni abby :P

Sunday, August 23, 2009

abstract algebra

Abstract algebra extends the familiar concepts found in elementary algebra and arithmetic of numbers to more general concepts.
Sets: Rather than just considering the different types of numbers, abstract algebra deals with the more general concept of sets: a collection of all objects (called elements) selected by property, specific for the set. All collections of the familiar types of numbers are sets. Other examples of sets include the set of all two-by-two matrices, the set of all second-degree polynomials (ax2 + bx + c), the set of all two dimensional vectors in the plane, and the various finite groups such as the cyclic groups which are the group of integers modulo n. Set theory is a branch of logic and not technically a branch of algebra.
Binary operations: The notion of addition (+) is abstracted to give a binary operation, ∗ say. The notion of binary operation is meaningless without the set on which the operation is defined. For two elements a and b in a set S, a ∗ b is another element in the set; this condition is called closure. Addition (+), subtraction (-), multiplication (×), and division (÷) can be binary operations when defined on different sets, as is addition and multiplication of matrices, vectors, and polynomials.
Identity elements: The numbers zero and one are abstracted to give the notion of an identity element for an operation. Zero is the identity element for addition and one is the identity element for multiplication. For a general binary operator ∗ the identity element e must satisfy a ∗ e = a and e ∗ a = a. This holds for addition as a + 0 = a and 0 + a = a and multiplication a × 1 = a and 1 × a = a. Not all set and operator combinations have an identity element; for example, the positive natural numbers (1, 2, 3, ...) have no identity element for addition.
Inverse elements: The negative numbers give rise to the concept of inverse elements. For addition, the inverse of a is −a, and for multiplication the inverse is 1/a. A general inverse element a−1 must satisfy the property that a ∗ a−1 = e and a−1 ∗ a = e.
Associativity: Addition of integers has a property called associativity. That is, the grouping of the numbers to be added does not affect the sum. For example: (2 + 3) + 4 = 2 + (3 + 4). In general, this becomes (a ∗ b) ∗ c = a ∗ (b ∗ c). This property is shared by most binary operations, but not subtraction or division or octonion multiplication.
Commutativity: Addition of integers also has a property called commutativity. That is, the order of the numbers to be added does not affect the sum. For example: 2+3=3+2. In general, this becomes a ∗ b = b ∗ a. Only some binary operations have this property. It holds for the integers with addition and multiplication, but it does not hold for matrix multiplication or quaternion multiplication .

Groups – structures of a set with a single binary operation
Main article: Group (mathematics)
See also: Group theory and Examples of groups
Combining the above concepts gives one of the most important structures in mathematics: a group. A group is a combination of a set S and a single binary operation ∗, defined in any way you choose, but with the following properties:
An identity element e exists, such that for every member a of S, e ∗ a and a ∗ e are both identical to a.
Every element has an inverse: for every member a of S, there exists a member a−1 such that a ∗ a−1 and a−1 ∗ a are both identical to the identity element.
The operation is associative: if a, b and c are members of S, then (a ∗ b) ∗ c is identical to a ∗ (b ∗ c).
If a group is also commutative—that is, for any two members a and b of S, a ∗ b is identical to b ∗ a—then the group is said to be Abelian.
For example, the set of integers under the operation of addition is a group. In this group, the identity element is 0 and the inverse of any element a is its negation, −a. The associativity requirement is met, because for any integers a, b and c, (a + b) + c = a + (b + c)
The nonzero rational numbers form a group under multiplication. Here, the identity element is 1, since 1 × a = a × 1 = a for any rational number a. The inverse of a is 1/a, since a × 1/a = 1.
The integers under the multiplication operation, however, do not form a group. This is because, in general, the multiplicative inverse of an integer is not an integer. For example, 4 is an integer, but its multiplicative inverse is ¼, which is not an integer.
The theory of groups is studied in group theory. A major result in this theory is the classification of finite simple groups, mostly published between about 1955 and 1983, which is thought to classify all of the finite simple groups into roughly 30 basic types.

Elementary algebra..

Elementary algebra is the most basic form of algebra. It is taught to students who are presumed to have no knowledge of mathematics beyond the basic principles of arithmetic. In arithmetic, only numbers and their arithmetical operations (such as +, −, ×, ÷) occur. In algebra, numbers are often denoted by symbols (such as a, x, or y). This is useful because:
It allows the general formulation of arithmetical laws (such as a + b = b + a for all a and b), and thus is the first step to a systematic exploration of the properties of the real number system.
It allows the reference to "unknown" numbers, the formulation of equations and the study of how to solve these (for instance, "Find a number x such that 3x + 1 = 10").
It allows the formulation of functional relationships (such as "If you sell x tickets, then your profit will be 3x − 10 dollars, or f(x) = 3x − 10, where f is the function, and x is the number to which the function is applied.").

Polynomials
Main article: Polynomial
A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, and multiplication (where repeated multiplication of the same variable is standardly denoted as exponentiation with a constant non-negative whole number exponent). For example, x2 + 2x − 3 is a polynomial in the single variable x.
An important class of problems in algebra is factorization of polynomials, that is, expressing a given polynomial as a product of other polynomials. The example polynomial above can be factored as (x − 1)(x + 3). A related class of problems is finding algebraic expressions for the roots of a polynomial in a single variable.

history..

History...XD
While the word "algebra" comes from Arabic word (al-jabr, الجبر literally, restoration), its origins can be traced to the ancient Babylonians,[1] who developed an advanced arithmetical system with which they were able to do calculations in an algorithmic fashion. The Babylonians developed formulas to calculate solutions for problems typically solved today by using linear equations, quadratic equations, and indeterminate linear equations. By contrast, most Egyptians of this era, and most Indian, Greek and Chinese mathematicians in the first millennium BC, usually solved such equations by geometric methods, such as those described in the Rhind Mathematical Papyrus, Sulba Sutras, Euclid's Elements, and The Nine Chapters on the Mathematical Art. The geometric work of the Greeks, typified in the Elements, provided the framework for generalizing formulae beyond the solution of particular problems into more general systems of stating and solving equations, though this would not be realized until the medieval Muslim mathematicians.
The
Hellenistic mathematicians Hero of Alexandria and Diophantus [2] as well as Indian mathematicians such as Brahmagupta continued the traditions of Egypt and Babylon, though Diophantus' Arithmetica and Brahmagupta's Brahmasphutasiddhanta are on a higher level.[3] Later, Arab and Muslim mathematicians developed algebraic methods to a much higher degree of sophistication. Although Diophantus and the Babylonians used mostly special ad hoc methods to solve equations, Al-Khowarazmi was the first to solve equations using general methods. He solved the linear indeterminate equations, quadratic equations, second order indeterminate equations and equations with multiple variable.
The word "algebra" is named after the
Arabic word "al-jabr , الجبر" from the title of the book al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala , الكتاب المختصر في حساب الجبر والمقابلة, meaning The book of Summary Concerning Calculating by Transposition and Reduction, a book written by the Islamic Persian mathematician, Muhammad ibn Mūsā al-Khwārizmī (considered the "father of algebra"), in 820. The word Al-Jabr means "reunion"[4]. The Hellenistic mathematician Diophantus has traditionally been known as the "father of algebra" but in more recent times there is much debate over whether al-Khwarizmi, who founded the discipline of al-jabr, deserves that title instead.[5] Those who support Diophantus point to the fact that the algebra found in Al-Jabr is slightly more elementary than the algebra found in Arithmetica and that Arithmetica is syncopated while Al-Jabr is fully rhetorical.[6] Those who support Al-Khwarizmi point to the fact that he introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation) which the term al-jabr originally referred to,[7] and that he gave an exhaustive explanation of solving quadratic equations,[8] supported by geometric proofs, while treating algebra as an independent discipline in its own right.[9] His algebra was also no longer concerned "with a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." He also studied an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."[10]
The Persian mathematician
Omar Khayyam is credited with identifying the foundations of algebraic geometry and found the general geometric solution of the cubic equation. Another Persian mathematician, Sharaf al-Dīn al-Tūsī, found algebraic and numerical solutions to various cases of cubic equations.[11] He also developed the concept of a function.[12] The Indian mathematicians Mahavira and Bhaskara II, the Persian mathematician Al-Karaji,[13] and the Chinese mathematician Zhu Shijie, solved various cases of cubic, quartic, quintic and higher-order polynomial equations using numerical methods. In 1637 Rene Descartes published La Géométrie, inventing analytic geometry and introducing modern algebraic notation.
Another key event in the further development of algebra was the general algebraic solution of the cubic and quartic equations, developed in the mid-16th century. The idea of a
determinant was developed by Japanese mathematician Kowa Seki in the 17th century, followed by Gottfried Leibniz ten years later, for the purpose of solving systems of simultaneous linear equations using matrices. Gabriel Cramer also did some work on matrices and determinants in the 18th century. Abstract algebra was developed in the 19th century, initially focusing on what is now called Galois theory, and on constructibility issues.

Thursday, August 20, 2009

know more about me :* :))


**about me**




Name: Marion Joyce B. Barbosa

Nickname: Gelai, Joyz, Bugi :)
Age: 14 (im turning 15 this coming sept.4 :)
Address: #16 Solid St., Dayangdang Naga City
Birthday: Septemeber 04,1994
Zodiac Sign: Virgo
C.P. no. 09082090854
E-mail ad: *astigjoyz12@yahoo.com.ph
*mari0nj0yce@yahoo.com
School: *Jumels Leaning Center- preparatory
*Naga Central School 1- elementary
*Camarines Sur National High School ESEP-present
Section:

Parents:
Siblings:
Hobbies:
Movies: Harry Potter's movie,Twilight, School of Rock,
TV Program: Boys Over Flowers :)
Music: POP :)
Singer: MYMP:)Craig David, Boyz II Men, Bamboo, Lighthouse :P
Songs: I Miss You, Hello, Solitude, You First Believed, Stupify, Outside, You and Me, and No Ordinary Love
Color: Black. Green && Purple :)
Food: Chocolate, cake, ice cream, spaghetti, barbeque, adobo. YUM!
Number: 04&&14 :)



**LIKES :)





kind, friendly like me, good-smelling, balong kuripot! :)) BASTA. haha :)



** I HATE:

BIATCHES! POSERS&& PLASTIC PEOPLE!!




** my BESTPALS :)



Mariz,Renz,Mau,Marvin- they are the people whom i always spend my time with :)
Abby,Sharmaine,Carmela,Ava,Ruby-my snackmates. haha :))
Bielle,Icah,Kiss-my longtime friends. :)
Charles-my tutor in algeb. haha :D





** AMBITION:


i just want to finish my studies && to have my job. :)

algebra :*

algebra..algebra...algebra...
Algebra is the branch of mathematics concerning the study of the of operations and the things which can be constructed from them including terms, polynomials, equations and algebraic structures. Together with geometry, analysis, combinatorics, and number theory, algebra is one of the main branches of pure mathematics.
Elementary algebra is often part of the curriculum in secondary education and introduces the concept of variables representing numbers. Statements based on these variables are manipulated using the rules of operations that apply to numbers, such as addition. This can be done for a variety of reasons, including equation solving.
Algebra is much broader than elementary algebra and studies what happens when different rules of operations are used and when operations are devised for things other than numbers. Addition and multiplication can be generalised and their precise definitions lead to
structures such as groups, rings and fields.