BLOGGER TEMPLATES AND TWITTER BACKGROUNDS

Sunday, August 23, 2009

abstract algebra

Abstract algebra extends the familiar concepts found in elementary algebra and arithmetic of numbers to more general concepts.
Sets: Rather than just considering the different types of numbers, abstract algebra deals with the more general concept of sets: a collection of all objects (called elements) selected by property, specific for the set. All collections of the familiar types of numbers are sets. Other examples of sets include the set of all two-by-two matrices, the set of all second-degree polynomials (ax2 + bx + c), the set of all two dimensional vectors in the plane, and the various finite groups such as the cyclic groups which are the group of integers modulo n. Set theory is a branch of logic and not technically a branch of algebra.
Binary operations: The notion of addition (+) is abstracted to give a binary operation, ∗ say. The notion of binary operation is meaningless without the set on which the operation is defined. For two elements a and b in a set S, a ∗ b is another element in the set; this condition is called closure. Addition (+), subtraction (-), multiplication (×), and division (÷) can be binary operations when defined on different sets, as is addition and multiplication of matrices, vectors, and polynomials.
Identity elements: The numbers zero and one are abstracted to give the notion of an identity element for an operation. Zero is the identity element for addition and one is the identity element for multiplication. For a general binary operator ∗ the identity element e must satisfy a ∗ e = a and e ∗ a = a. This holds for addition as a + 0 = a and 0 + a = a and multiplication a × 1 = a and 1 × a = a. Not all set and operator combinations have an identity element; for example, the positive natural numbers (1, 2, 3, ...) have no identity element for addition.
Inverse elements: The negative numbers give rise to the concept of inverse elements. For addition, the inverse of a is −a, and for multiplication the inverse is 1/a. A general inverse element a−1 must satisfy the property that a ∗ a−1 = e and a−1 ∗ a = e.
Associativity: Addition of integers has a property called associativity. That is, the grouping of the numbers to be added does not affect the sum. For example: (2 + 3) + 4 = 2 + (3 + 4). In general, this becomes (a ∗ b) ∗ c = a ∗ (b ∗ c). This property is shared by most binary operations, but not subtraction or division or octonion multiplication.
Commutativity: Addition of integers also has a property called commutativity. That is, the order of the numbers to be added does not affect the sum. For example: 2+3=3+2. In general, this becomes a ∗ b = b ∗ a. Only some binary operations have this property. It holds for the integers with addition and multiplication, but it does not hold for matrix multiplication or quaternion multiplication .

Groups – structures of a set with a single binary operation
Main article: Group (mathematics)
See also: Group theory and Examples of groups
Combining the above concepts gives one of the most important structures in mathematics: a group. A group is a combination of a set S and a single binary operation ∗, defined in any way you choose, but with the following properties:
An identity element e exists, such that for every member a of S, e ∗ a and a ∗ e are both identical to a.
Every element has an inverse: for every member a of S, there exists a member a−1 such that a ∗ a−1 and a−1 ∗ a are both identical to the identity element.
The operation is associative: if a, b and c are members of S, then (a ∗ b) ∗ c is identical to a ∗ (b ∗ c).
If a group is also commutative—that is, for any two members a and b of S, a ∗ b is identical to b ∗ a—then the group is said to be Abelian.
For example, the set of integers under the operation of addition is a group. In this group, the identity element is 0 and the inverse of any element a is its negation, −a. The associativity requirement is met, because for any integers a, b and c, (a + b) + c = a + (b + c)
The nonzero rational numbers form a group under multiplication. Here, the identity element is 1, since 1 × a = a × 1 = a for any rational number a. The inverse of a is 1/a, since a × 1/a = 1.
The integers under the multiplication operation, however, do not form a group. This is because, in general, the multiplicative inverse of an integer is not an integer. For example, 4 is an integer, but its multiplicative inverse is ¼, which is not an integer.
The theory of groups is studied in group theory. A major result in this theory is the classification of finite simple groups, mostly published between about 1955 and 1983, which is thought to classify all of the finite simple groups into roughly 30 basic types.

0 comments: